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ABSTRACT
When designing vehicle vibration monitoring systems for

aerospace devices, it is common to use well-established models
of vibration features to determine whether failures or defects ex-
ist. Most of the algorithms used for failure detection rely on these
models to detect significant changes in a flight environment. In
actual practice, however, most vehicle vibration monitoring sys-
tems are corrupted by high rates of false alarms and missed de-
tections. Research conducted at the NASA Ames Research Cen-
ter has determined that a major reason for the high rates of false
alarms and missed detections is the numerous sources of statis-
tical variations that are not taken into account in the modeling
assumptions. In this paper, we address one such source of varia-
tions, namely, those caused during the design and manufacturing
of rotating machinery components that make up aerospace sys-
tems. We present a novel way of modeling the vibration response
by including design variations via probabilistic methods. The re-
sults demonstrate initial feasibility of the method, showing great
promise in developing a general methodology for designing more
accurate aerospace vehicle vibration monitoring systems.

KEYWORDS
Variation analysis and modeling; Monte Carlo simulation;

Quality control; Design for vehicle health monitoring; Proba-
bilistic vibration models.
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DESIGNING VEHICLE MONITORING SYSTEMS

This work addresses a need to design effective vehicle health
monitoring systems for aerospace vehicles. Ongoing research fo-
cuses on various sources of variation that result in unexpected
performance variations. The current focus is in assuring that cor-
rect models of system input signals are used for the algorithms
and metrics used for failure detection. This paper explores one
aspect of modeling input signals in such systems, considering de-
sign and manufacturing variations for the system response vari-
able that is being monitored, namely, the vibration signature.

In the following subsections, we first present some back-
ground research on vehicle health monitoring systems, two ex-
amples of the types of variations encountered in such systems,
and discuss the need to incorporate probabilistic models to ac-
count for such variations. Then, the use of probabilistic methods
(e.g., Monte Carlo simulation) is reviewed with a simple exam-
ple in design, and compared to more traditional variation anal-
ysis techniques. Next, a lumped parameter dynamic model is
presented for a complex cam-follower system used in this paper,
followed by an analysis of vibration data obtained from such a
model. Finally, the Monte Carlo simulation technique is used
to vary a subset of the design parameters. The effect on the vi-
bration response is explored to determine whether probabilistic
methods can be used to model the inherent variations observed
in the dynamic response of complex systems.
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Figure 1. Variations in Vibration Levels in a Rotorcraft Transmission.

Background and Objective

Failures in rotating machinery for high-risk aerospace ap-
plications are unacceptable when they result in catastrophic ac-
cidents, and undesirable when they result in high maintenance
costs. In an attempt to detect any anomalous behavior during
flight for increased safety, most aircraft manufacturers and op-
erators are moving towards installing vehicle health monitoring
systems. Despite the motivation to make these systems standard
onboard aircraft, false alarms and missed detections still remain
a serious concern, making their reliability questionable and their
operation costly in practice. One of the main reasons for the high
rate of false alarms and missed failures is the lack of a statis-
tically sufficient sample of baseline and failure signatures from
which generalizations can be made. Specifically, since failure
events are rare in such highly-maintained systems, there is no
knowledge of the distribution of responses they could generate.

Recent work at NASA Ames Research Center has demon-
strated that the statistical variations in baseline (healthy) data
as well as faulty data must be accounted for to assure accurate
anomaly detection in aircraft vibration-monitoring systems (Huff
et al., 2000; Huff et al., 2002; Tumer and Huff, 2000; Tumer
and Huff, 2001). In this work, we address the mismatch be-
tween modeled responses and empirical observations by devel-
oping statistical models that take variations into account. The
specific objective is to explore probabilistic approaches to gen-

erate a reliable distribution of vibration responses using lumped-
parameter dynamic models. If such an approach proves feasible,
more accurate models of healthy and faulty aircraft vibration data
will be developed and used as signal models for vibration moni-
toring systems.

Observed Variations in Vibration Signatures
For rotating machinery, vibration signals are thought to con-

tain indicators of defects and usage damage in rotating compo-
nents such as gears, bearings, shafts, rotors, etc. Each of the
rotating components emanate specific frequencies that appear in
the vibration signals; any changes in the amplitude and frequency
content of these signatures, or the occurrence of sidebands or ad-
ditional frequencies, is indicative of potential variations and de-
fects. The types of variations of interest in this work include
those that are inherent from the design and manufacturing pro-
cesses (e.g., tolerances, assembly variations, surface roughness
and waviness errors), material defects, cracks, and other point
defects on the rotating components (Tumer and Huff, 2001; Huff
et al., 2002; Tumer and Huff, 2000). In this paper, we focus
on variations introduced during design and manufacturing, effec-
tively introducing a stochastic nature to the modeling parameters
such as stiffness, mass, and damping.

The impact of design, manufacturing, and assembly varia-
tions on system vibrations signals has been observed throughout
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Figure 2. Variations in the Frequency Response in Epicyclic Gears.

our research. As a first example, Figure 1 shows a schematic of
a helicopter transmission for an OH58 helicopter (Lewicki and
Coy, 1987), as well as a plot of experimental data collected us-
ing a test rig which houses such a transmission box (Huff et al.,
2000). The different lines correspond to four different assembly
instances (labeled as “phases”) of the same transmission box. Vi-
bration data were collected for each assembly instance. Within
each instance, three variables were varied (namely torque, mast
lift and mast bending forces) using a factorial experimental de-
sign. As shown, the overall vibration levels (total power) varied
significantly depending on the test conditions defined by the four
experimental variables (Huff et al., 2000). This effect is partic-
ularly clear in the case of high torque conditions. Such changes
in overall vibration levels can result in frequent false alarms, un-
less the distribution characteristics of the response metric (overall
RMS levels in this case) are captured and modeled accurately.

As a second example, Figure 2 shows a theoretical plot of
the frequency spectrum from one of the gear systems contained
in the helicopter transmission, based on empirical observations.
The geometry of the epicyclic gear system, shown schematically
in Figure 2, includes four smaller gears (planet gears) revolving
around a larger gear (sun gear) (Smith, 1999). In this example,
the theoretical epicyclic gear mesh frequency for a single planet
would fall on bin 99 on thex-axis (equal to the number of teeth),
as shown in black lines in Figure 2, along with typical sidebands
and the second harmonic. In the case of a system with four planet
gears, the exact epicyclic gear mesh frequency falls on the bins
marked by blue circles, clustered around the single planet fre-

quency value in multiples of four. In reality, the spacing between
the planet gears is subject to design variations, resulting in a dif-
ferent observation in frequency distributions: Figure 2 shows the
frequency clustering for two sets of equally-spaced planet gears
in red crosses on bins that are multiples of two. These types of
variations can invalidate the signal modeling assumptions used
for monitoring and fault detection systems, and result in high
rates of false alarms.

Probabilistic Variation Analysis in Design
A significant degree of variation is introduced during the de-

sign, manufacturing, and assembly of components that make up
aircraft systems. Standard tolerance variation analysis methods
used in design address this variability by predicting the total vari-
ation in the final system (Creveling, 1997). Because we are start-
ing from similar variation sources, this approach will be explored
and extended here to dynamic models of complex systems to pre-
dict the variation in vibration response characteristics.

A simple mechanical assembly is shown in Figure 3, where
three rectangular blocks of dimensionX1, X2, and X3 are de-
signed and manufactured to fit within the allocated space. Due
to the inherently probabilistic nature of the manufacturing pro-
cess, each of the dimensions is assigned specific tolerances based
on a distribution set by the designer, either based on empirical
manufacturing data or process capability specifications (Crevel-
ing, 1997). Typically, statistical tolerance analysis techniques are
applied to geometric models of such assemblies to predict the
magnitude and range of the variations in critical assembly fea-
tures. An example is a Monte Carlo simulation approach, shown
in Figure 3, to perform tolerance analysis for each manufactur-
ing and design parameter (Hammersley and Handscomb, 1964;
Creveling, 1997), where values of each parameterXi are drawn
randomly from an assumed distribution function, and then com-
bined through a functional model to determine the corresponding
values for the final variable of interest. The statistical moments
are then computed for the resultant values, which in turn are used
to determine the probability distribution for the final assembly
variableY = X1+X2+X3.

MONTE CARLO METHODS: REVIEW AND EXAMPLE
In this paper, we explore the application of Monte Carlo

methods to variation modeling for the purpose of determining
performance limits of complex dynamic systems. This section
presents the fundamentals of such an approach using a simple
design example.

Conceptually, Monte Carlo simulation is simple and ele-
gant (Metropolis and Ulam, 1949; Hammersley and Handscomb,
1964). Consider a functionf such that:

y = f (x1;x2; :::;xn); (1)
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wherey is a known function of random variablesx1;x2; :::;xn. We
assume that eachxi has a known random nature and all thexi’s
are statistically independent. The question we wish to answer (or
simulate) is: what is the random nature ofy?

To determine the random nature ofy, a random sample is
generated for eachxi. Using the known functionf (some sys-
tem/performance model),y is generated next. Depending on the
information needed from the random nature ofy (perhaps a mean
µ and standard deviationσ, or the number of timesy exceeds
some value out of 1000 trials, etc.), the value ofy or some sort of
frequency count is recorded.

As an example, consider the design of a helical coil spring
to achieve some specific spring constantk. The relation between
the performance parameterk and the design variables is

k =
d4G

8D3N
; (2)

whered is the wire diameter out of which the spring is made,
G is the shear modulus of the spring material,D is the diameter
of the spring (helix diameter), andN is the total number active
turns or coils of the spring. As a first pass, a deterministic model

with d = 1:5 mm, G = 79 GPa, D = 18:0 mm, andN = 13 turns
givesk = 660N=m. In reality, the values ofd, G, D, andN do
not always take on the same precise values for each spring that
is manufactured. Thus, a more accurate (with regard to how well
it represents reality) design model would be one which considers
the way the variations ofd, G, D, andN cause a variation ink.

For cases where the functionf is represented in a simple
form and is smooth enough to provide second derivatives, a low-
order Taylor series approximation for the mean ofy can be ex-
pressed as below, with the partial derivatives evaluated atxi = µi

(Hahn and Shapiro, 1994; Gao et al., 1995; Greenwood and
Chase, 1990; McAdams and Wood, 2000):

µy = f (µx1;µx2; :::;µxn)+
1
2

n

∑
i=1

∂2 f

∂x2
i

Var(xi): (3)

Similarly, a low-order approximation for the variance ofy can be
expressed as:

Var(y) =
n

∑
i=1

�
∂ f
∂xi

�2

Var(xi): (4)

Equations (3) and (4) can be applied to Eq. (2) to yield:

µk =
µd

4µG
8µD

3µN
+ 1

2
12µd

2µG
8µD

3µN
Var(d)

+ 1
2

12µd
4µG

8µD
5µN

Var(D)+ 1
2

2µd
4µG

8µD
3µN

3Var(N);
(5)

and,

Var(k) = ( 4µd
3µG

8µD
3µN

)2Var(d)+( µd
4

8µD
3µN

)2Var(G)

+ (�3µd
4µG

8µD
4µN

)2Var(D)+( �µd
4µG

8µD
3µN

2 )
2Var(N):

(6)

Substitutingd = 1:5 mm, G = 79 GPa, andD = 18:0 mm for
the average valuesµd, µG, µD, µN and takingVar(d) = 2:5�
10�5 mm, Var(G) = 6:9 GPa, Var(D) = 18:6� 10�3 mm, and
Var(N) = 1:87� 10�3 turns (Shigley and Mischke, 2001) for
the variations givesµk = 660 N=m andVar(k) = 27;600 N=m.
Translating this into a mechanical tolerance using a common
convention assuming a random variable (i.e., tolerances= 3σx =
3
p
(Var(x))) gives 498N=m.
Using Eqs. (3) and (4) allows designers a starting point to

understand, and compensate ordesign for, the effects of varia-
tion. Nevertheless, this approximate approach has a number of
key shortcomings that become apparent and critical as we ex-
plore more complex systems and the compound effects of differ-
ent types of variation. Of critical importance here are that: a)
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as engineering models become complex and computational, Eqs.
(3) and (4) fail to provide tractable analysis, and b) these two
equations give us limited, and at times misleading, information
about the probability distribution function ofy. As an example,
consider the relationy = sin(x). Using Eqs. (3) and (4), and tak-
ing x to be a random variable from a standard normal distribution
givesµy = 0 andσy = 1. Such a result may lead a designer to the
notion thaty can be modeled as a variable from a standard normal
distribution. If this notion were used to make parameter specifi-
cations or expectations of failure, important errors could occur.
Shown in Fig. 4 is a plot of the probability density function of
y. The probability density function fory is determined by apply-
ing a coordinate transformation theorem from statistics (Eisen,
1969). A key restriction of this theorem is that the mapping of
y = f (x) be one to one, which is violated in our simple spring
example.
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Returning to the spring example, we now use Monte Carlo
simulation to explore the variation in k as a function of the vari-
ations in d, G, D, and N. The histogram in Fig. 5 is generated
performing a Monte Carlo simulation as outlined earlier in this
section. Based on this simulation, there were no springs (out of
a sample run of 100,000 springs) that fell below k = 660� 498
N=m and above k = 660+ 498 N=m (taking the tolerance 498
N=m). This is compared to 270 (:27% from three-sigma toleranc-
ing) if k were treated as a normally distributed random variable.
The standard deviation of the Monte Carlo simulated springs is
17:5 N=m leading to a 3σ tolerance of 52:5 N=m. The signifi-
cant difference between the Monte Carlo simulated variation and
that approximated by Eq. 4 is due to the non-linearity of Eq. 2.
Also, this comparison highlights the potential for engineering er-
rors (in this case likely of a conservative nature) that would be
made based on simple, linearized, analytic models such as those
given by Eqs. 3 and 4.
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Figure 5. Histogram of k generated using Monte Carlo simulation.

This short review and comparison of approaches to represent
variation in design and manufacturing highlights some of the po-
tential advantages of Monte Carlo simulation. In summary, with
the minimal penalty of some computation time, Monte Carlo
simulation provides more useful information for the designer.
Based on this insight, we use Monte Carlo simulation to explore
how different sources of variation combine in more complex sys-
tems to influence the overall response and performance of a dy-
namic system.

APPLICATION: CAM-FOLLOWER RESPONSE
A lumped-parameter, seven degree-of-freedom (fourteenth-

order) model of a cam follower is used in this paper as an ex-
ample of a complex nonlinear system. The cam-follower sys-
tem is shown in Figure 6, and a schematic of the model is
shown in Figure 7, adapted from (Grewal and Newcombe, 1988)
and (McAdams and Wood, 1996). The parameter values for the
cam-follower system were taken from (Grewal and Newcombe,
1988), and are listed in Table 1. The equations of motion for the
model are:

Icθ̈ = �Cs f (θ̇c� θ̇i)�Ks f (θc�θi)

�Cbθ̇c�Tc; (7)

Mcÿ1 = �Cvsẏ1�Kvsy1�Fc cosΦ
+Fp; (8)

Mrÿ2 = �Cf (ẏ2� ẏ3)�Kf (y2� y3)

+Fc cosΦ�Fp; (9)

Mf ÿ3 = Cf (ẏ2� ẏ3)+Kf (y2� y3)

�C4(ẏ3� ẏ4)�K4(y3� y4)

�Fw�Fcb; (10)

M3ÿ4 = C4(ẏ3� ẏ4)+K4(y3� y4)

�C3(ẏ4� ẏ5)�K3(y4� y5); (11)
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Table 1. Constant Values for the Cam-Follower Dynamic Model.

Element Variable Value

cam moment of inertia Ic :00091034kg=m2

cam shaft rotational damping Cs f :01356N �m � s=rad
cam shaft rotational stiffness Ks f 22600N �m=rad

drive shaft friction Cb :113N �m � s=rad
cam mass Mc :5017Kg

cam shaft horizontal damping Cvs 752:9N � s=m
cam shaft horizontal stiffness Kvs 2:6e9N=m

system preload Fp 266:62N
follower stiffness Kf 175:1e6N=m

follower mass Mf :340kg
follower damping ratio η f :75

follower damping Cf η f 2
p

Mf Kf

external follower load Fw 100N
return spring stiffness K1;2;3 63000N=m

return spring mass M1;2;3 :0227kg
return spring damping ratio ηrs :075

return spring damping C1;2;3 ηrs2
p

M1K1
cam eccentricity e :01905m

M2ÿ5 = C3(ẏ4� ẏ5)+K3(y4� y5)

�C2(ẏ5� ẏ6)�K2(y5� y6); (12)

and,

M1ÿ6 = C2(ẏ5� ẏ6)+K2(y5� y6)

�C1ẏ6�K1y6; (13)

where θi is the input position, Ks f and Cs f model the damp-
ing and stiffness of the cam drive shaft, Cb accounts for friction
losses in the drive shaft bearing, Mc is the mass of the cam itself,
and, Ic is the cam moment of inertia about its center of rotation.
To account for the flexure of the shaft, a shaft stiffness, Kvs, and
a damping, Cvs have been added. The offset of the cam follower
from the center of the rotation of the cam is e, Kh accounts for
deformation at the roller-cam interface and Mr is the mass of the
roller. The inertia of the roller is assumed to have a negligible
effect on the rotational dynamics of the system. The mass of the
follower is Mf , with Kf and Cf the structural stiffness and damp-
ing of the follower, respectively. Ccb accounts for the friction at
the interface of the follower and the follower guide, Fcb is the
force that results for this friction, and, Fw is the external load on
the follower. The spring has been modeled as three elements to
approximate the distributed mass of the spring, with K1, K2, and
K3 representing the distributed spring constants. The structural
damping of the spring is approximated as C1, C2 and C3; M1, M2,
and M3 are the mass elements of the distributed spring system.
The state-space equations were integrated using a Runge-Kutta
integration routine. A simple harmonic motion (SHM) cam pro-
file with a maximum rise of :0254m is used. The cam is assumed
to rotate at a fixed rate of 1500 RPM (25 Hz). The numerical
values for the constants used in the simulation of cam operation
are presented in Table 1.

In Figure 8, the velocity and acceleration responses of the
cam follower (from variable y3 in Figure 7) are shown. The
dashed line shows the idealized follower velocities and accel-
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Figure 6. Schematic of cam-follower modeled
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Figure 7. The dynamic model of the cam-follower system.

erations as determined by differentiating the cam profile. The
solid line shows the reality when system mass, stiffness, and the
resulting dynamics are taken into consideration. In contrast, Fig-
ure 9 shows the velocity and acceleration responses of the cam
follower with a profile error of 25 µm and a surface roughness
of 2:0 µm added to the cam profile. The profile error is mod-
eled using a deterministic offset, simulated on the cam surface
by the addition of a sinusoid of tp=3sin(nθ). In this case, tp is
the profile tolerance and n was taken to be small compared to the
forcing frequency (1500 RPM) and large with respect to the step
size of the simulation code. The surface roughness is modeled
using a random number generator and transformation techniques
to simulate the surface roughness.

6 Copyright  2002 by ASME



follower velocity with dynamics
idealized follower velocity

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

180 200 220 240 260 280 300 320 340 360

fo
llo

w
er

 v
el

oc
ity

 [
m

/s
]

angle [degrees]

2

follower acceleration with dynamics
idealized follower acceleration 

-2000

-1500

-1000

-500

0

500

1000

180 200 220 240 260 280 300 320 340 360

fo
llo

w
er

 a
cc

el
er

at
io

n,
 [

m
/s

   
]

angle [degrees]

Figure 8. Follower velocity and acceleration as a function of cam rotation

with ideal surface smoothness and no profile tolerance on the cam.

The addition of these geometric variations cause minimal
change in follower velocity as a function of cam angle. However,
the simulations show that a geometric variation in the cam causes
a significantly different acceleration, with a large magnitude, in
the follower. The effective higher frequency and magnitude fol-
lower will cause significantly different vibrations on the system.
Of particular relevance to our effort to simulate failure modes is
that an increase in follower acceleration is related to an increase
in the wear rate of the cam and follower (Rothbart, 1956). Also
of key importance is that acceleration is generally the signal that
is monitored for structural health status. Thus, the behavior of
the acceleration signal is critical for accurate fault prediction and
detection.

PROBABILISTIC CAM-FOLLOWER VIBRATION MODEL
Exploring the vibrational impact of variations in parameters

such as spring stiffness provides a different simulation challenge.
Parameter values of components vary from cam system to cam
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Figure 9. Follower velocity and acceleration as a function of cam rotation

with profile and surface variation on the cam.

system, due to manufacturing and assembly variations. Because
parts are replaced regularly during the lifecycle of systems, these
variations are important to understand. For example, the spring
constant on several cam systems can be distributed similarly to
the distribution in Figure 5. In the end, vibration monitoring
systems have to operate with generalized models of system re-
sponse, with these types of variations included in such models.

The core research question is two-fold: 1) how much prod-
uct variation results from a random fluctuation in the manufac-
tured parts?; and, 2) how does response variation (e.g., vibration
response distribution) relate to the parameters of a specific sys-
tem being monitored? The answer to these questions will allow
for a more informative design of vehicle health monitoring sys-
tems. For example, the behavior of some set of cam systems
would be used to determine performance metrics, and windows
on the metrics for acceptable performance. In this section, we
explore the effect of a variation in spring stiffness (inherent from
the manufacturing process) on a sampling of cam systems.
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Analysis of Cam-Follower Vibration Signatures
Prior to analyzing the effect of design variations on the vi-

brational response, the vibration signature needs to be under-
stood to decide on a possible set of features (vibration metrics)
that will be used to monitor system performance and indicate the
occurrence of failures. A small sample of the simulated cam-
follower vibration responses is shown in Figures 8 and 9 for half
a revolution (for an ideal cam and a cam with profile errors, re-
spectively). 12 revolutions of these signals are used to analyze
the frequency content, with a sampling frequency of 10;000 Hz
(Nyquist cut-off frequency is 5;000 Hz.)

The frequency content of these signals is shown in Fig-
ure 10. The first plot shows the entire set of frequencies com-
puted from the two signals. Based on a careful analysis, the only
difference in the frequency content due to the addition of pro-
file and surface errors manifests itself in the higher frequency
range. The second plot shows a zoomed-in portion of the higher-
frequency range where the difference due to the two signals can
be seen clearly. In general, the addition of the profile and sur-
face errors introduces frequencies in the noise range, as well as
increasing the overall power levels.

Many possibilities exist for selecting a feature set for the
purposes of monitoring changes in the vibration signatures
(Smith, 1999; Lewicki and Coy, 1987; Tumer and Huff, 2001). In
this paper, we first focus on the most standard vibration monitor-
ing feature, namely, the global measure of vibration levels. This
measure can be computed as the area under the power spectral
density plot in the frequency domain (equivalent to the variance
in the time domain by Parseval’s theorem.) Because most of the
changes due to the addition of surface errors to the cam profile
are observed in the higher-frequency range shown in Figure 10
(� 177 Hz to 250 Hz), we select the total power in this range
as the vibration metric of interest for this study. One metric that
will be explored in the future is the total power in the residual sig-
nal (where the main frequency components have been removed),
potentially containing the smaller effects of design and manufac-
turing variations.

Analysis of the Impact of Design Variations
The signals defined and analyzed in the previous subsection

are varied next using the Monte Carlo simulation method. In this
case, both the signal from the ideal cam and from the cam with
profile and surface errors are used to determine whether a random
variation in the spring constants K1, K2, and K3 (see model in
Figure 7), similar to the helical spring explored earlier, will result
in variations in the vibration metric of interest (e.g., total power
in the high-frequency range.)

The spring constant tolerance model is developed by anal-
ogy with the earlier example in the paper. The spring constant
mean is taken as 21,000 N/m with a standard deviation of 2:65%
(660=17:5= 0:0265) or 567 N/m. Recall that the spring that was
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Figure 10. Comparison of Power Spectral Densities for an Ideal Cam

Profile vs. a Cam with profile tolerance and surface roughness added

(high-frequency range zoomed-in).

explored previsouly had a mean of 660 N/m and a standard devi-
ation of 17.5 N/m. The spring was chosen as the element to vary
because we can develop a reasonable tolerance model for this el-
ement (unlike the damping), and it is likely to have a larger effect
on the vibrational response than one of the other parameters.

N = 200 number of trials are generated using the Monte
Carlo simulation method (minimum number of trials required
(Creveling, 1997)). A plot of the selected vibration metric is
shown in Figure 11 for the case of the ideal cam profile and the
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Figure 11. Total Power in the High-Frequency range for an Ideal Cam

vs. a Cam with profile tolerance and surface roughness added.

cam profile with errors. As observed, the overall vibration levels
and the variance in these levels are higher for the case of cam
profile with errors.

The statistics (mean, standard deviation, skewness, kurtosis)
of the vibration data generated using MC simulation are summa-
rized in Table 2 for all of the frequency ranges for comparison.
Using the high-frequency range once again, the ideal profile case
results in a mean value of 62;967:00 and a standard deviation of
83:98, resulting in a tolerance of 251:95. The error profile case
results in a mean value of 69;250:00 and a standard deviation
of 3;468:50, resulting in a tolerance of 10;404:00 for the overall
vibration metric.

Recall from the earlier review of Monte Carlo techniques
that the standard approach to computing tolerances (using Equa-
tions 3 and 4) based on the complex mathematical relationship
between the design parameters (d, G, D, and N) and the vibra-
tion response (sum of the total power in ÿ3) would have been in-
tractable and highly simplistic (linearized.) This computational
approach provides the vehicle monitoring system designer with
the possible ranges of expected values of the monitoring metric,
based on the random variation in the selected subset of design
parameters. Figure 12 shows the statistical distribution of the
high-frequency vibration power values for both cases (total num-
ber bins is 20.) As observed, the metric for both cases appear to
follow a normal distribution. However, the spread in the metric
computed from the case of cam profile with errors is much larger
in value than the ideal cam profile case.
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Figure 12. Histogram of the Probability Distribution of the Total Power

in the High-Frequency range for an Ideal Cam vs. a Cam with profile

tolerance and surface roughness added.

Discussion
Several observations can be made based on these analysis re-

sults. First, in addition to the mean levels of the vibration metric
being larger, the variance in the value of the vibration metric due
to the variation of the spring constant is larger (approximately a
factor of 40) in the case of the cam with surface errors. This im-
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Table 2. Statistics of Total Power Changes due to MC simulation.

Ideal Profile Error Profile
Freq Range Mean St Dev Skew Kurt Mean St Dev Skew Kurt

Total 231670.00 82.51 -0.23 3.35 249930.00 3468.4 -0.25 3.15
Low-Freq 163880.00 0.54 -0.06 3.07 164120.00 143.27 -0.21 3.03
High-Freq 62967.00 83.98 -0.22 3.35 69250.00 3468.5 -0.25 3.18

plies a greater impact of component variations on the vibration
response of the (more realistic) cam with profile and surface er-
rors. As a result, the models used for vehicle health monitoring
systems not only have to take the variation in the design param-
eters into account, but also model the profile and surface errors
more accurately, which is nonexistent from current models.

Second, the effect of the random variation in the spring con-
stant (K) variable on the vibration metric is quite significant, as
observed by the high variance value. The mathematical relation-
ship describing the vibration metric selected in this study would
have to be modified to add the expected variation which has prop-
agated through the complex dynamic system, and resulted in the
computed variation. In addition, the values of the metric within
the computed variation range will have to be stored to assure the
elimination of false alarms: in other words, training of the data
must include the variation that has propagated through the sys-
tem, so that anomalies are not identified incorrectly.

Let us revisit the situation described in Figure 1, where
the four experimental factors (mast lift, mast bend, torque, and
assembly) resulted in significant differences in vibration lev-
els. The question those empirical observations brought up was
whether any of these vibration levels were ”acceptable” . A prob-
abilistic approach as described in this paper will enable the de-
signer to set the limits of the vibration levels according to the
mathematical model of the OH58 test rig vibrations, which will
then identify which of the test conditions fall within the accept-
able limits of variation. A similar approach can be followed for
the situation described in Figure 2, where the vibration metric
would be the power level at each of the frequencies, and angular
variations in the placement of the planet gears can be propagated
through the system to determine further effects.

CLOSURE
This paper addresses the problem of incorrect modeling as-

sumptions made when designing vehicle health monitoring sys-
tems, resulting in high rates of false alarms and missed detec-
tions. The specific problem that was addressed is the necessity
of including the effect of statistical variations introduced during
the design and manufacturing of rotating machinery components
that make up most aerospace systems. The propagation of such
significant variations through the system and their effect on the
final monitoring metric of interest is typically unknown. In this
paper, probabilistic methods (e.g., Monte Carlo simulation) are

used to describe the nature of the variations in the system re-
sponse due to variations in a subset of design parameters. The
results show significant variation that must be taken into account
using probabilistic models.

The paper presents an initial feasibility of enhancing de-
terministic dynamic models of complex systems by combining
them with probabilistic models. Only a subset of design parame-
ters (those describing the spring constant K) were considered in
this paper. For a more thorough analysis, a full MC simulation
is needed on all the parameters, followed by a sensitivity anal-
ysis. Furthermore, careful statistical tests need to be performed
to determine the nature of the parameter distributions resulting
from the MC simulation. In addition, the paper uses a simple
cam-follower system. Future work will attack the problem of
high-risk aerospace systems with much more complex system
models. As demonstrated in this paper, the effect of surface and
profile errors requires special attention in such complex system.
Ongoing work focuses on developing finite difference models of
rotorcraft transmission systems and aircraft engine gear systems.
These models will be used to determine whether and how the
design and manufacturing variations propagate through the sys-
tems, and how they can be represented in the signal modeling
assumptions for vehicle health monitoring systems. Using this
approach, variational models can be developed without reliance
on systems that are simply expressed parametrically. Finally, the
paper made use of process capability data published in design
books to determine the distributions of individual design param-
eters. One goal of this work is to represent all potential fail-
ure modes/defect types probabilistically. Ongoing work focuses
on generating empirical distributions that define the probabilistic
nature of rare failure events for aerospace machinery.
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